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ABSTRACT D

ZMOB is a multi-microprocessor system consisting of
256 Z80A microprocessors that communicate via a fast
cyclic shift-register bus. This paper discusses the
efficient use of ZMOB for various types of image processing
operations, including point and local operations, discrete
transforms, geometric operations, and computation of image
statistics.N
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1. Introduction

1.1 ZMOB

ZMOB [1] is a multi-microprocessor system with a

ring-like inter-processor communication system called the

"conveyor belt". The current configuration has 256 proces-

sors and is capable of executing a total of about 100 mil-

lion instructions per second. This section explains features

of the conveyor belt architecture exploited in processor

communication.

The conveyor belt allows any processor to communicate

with any other, at a speed so great that it is unnoticeable

to the processor. Asynchronously, processors may compute

data and pass intermediate results among each other. The

conveyor belt also supports tightly-synchronized ("lock-step")

parallel image processing algorithms by allowing processors

to all communicate data in an organized way (e.g., a "pass-

right" sequence) or rapidly pass blocks of data among one

another (termed "burst mode").

However, in instruction-level lock-step mode (where

absolute synchronous timing is crucial), not all patterns

of data exchange can occur during an infinitesimal communi-

cation step. For example, no processor can receive data

from more than one proce:;sor or ;enrid (Lita to more than one

sIpecif ic processor at Lie samL Lime.
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taneously between all the ! :.',)r:; (1 .,. , he, VAX Oll

data to or receive data Crom all 256 processors, at once),

and all processors' computations may be synchronized by

a command from the VAX. Thus, heavy simultaneous convey-

or belt traffic must be organized and orchestrated care-

fully, and the VAX can provide the means to put the

processors in synch to begin that activity properly.

:9

m IInl



1.2 Image Processing o ZMIOB

This paper deals with the efficient use of ZMOB for

performing various types of image processing operations,

including point and local operations, discrete transforms,

geometric operations, and computation of image statistics.

The aim is to make the fullest possible use of ZMOB's

parallelism, so as to achieve a speedup by a factor pro-

portional to 256, the number of processors. To this end,

we consider how the image data should be partitioned

among the processors, and how the operations should be

seqmented into computation and communications steps. We

also compare ZMOB processing with performing operations

on the host VAX itself.



2. Point and Local Operations

A point operation on an image computes a new value

for each pixel as a function of the old value, independent

of the values of other pixels. To perform such an opera-

tion on ZMOB,the image is divided into 256 parts in any

convenient way; each ZMOB processor receives one part

from the host VAX and operates on its pixels; and the

results are returned to the host VAX.

Let C and C be he times for a ZMOB processor andz v

for the VAX, respectively, to perform the given operation

on one pixel. Let N 2 be the number of pixels in the

image, and let r be the time required to pass one pixel

from the VAX to ZMOB or vice versa via the UNI5US.

Then the time required to perform the operation on the

2entire image in the VAX is C N 2 , while the time required tov

2perform it on ZMOB is 2rN + C %"/256. Evi.Ptlv if

,)12r 4 ' -_ 2 (C , nsiiq Z/M()IB is; dvdntaqeoUSZ V

The situation is more complicated when we dea] with

local operations, in which the result for a given pixel

depends on the values of the pixel and a set of its

neiqhbors. Here, if we partition the imaqe into disjoint

parts, exchange of information between ZMOB processors i.;

necessary, and the amount of (-xchdnqedepends on the shapes

of the parts. Alternatively, we can divide the image into

overlapping parts, such that for every pixel there exists

a processor that contains the pixel and its neighbors. This

I -



makes data exchange unnecessary when the local operation

is performed only once; but if the operation must be

iterated, as is often the case, the amount of overlap

needed may become excessive.

Section 2.1 discusses the optimal choice for the

shapes of the parts, and concludes that square blocks are

best, at least for all the standard types of neighborhoods

used in local operations. Section 2.2 discusses the amount

of overlap and shows that the least possibl overlap is

always optimal. Section 2.3 discusses the relative merits

of performing an (iterated) operation on ZMOB or on the host

VAX itself.
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2.1. Optimal Region Shape

Iterated local operations performed on ZMOB involve

cycling between two states: computation, where each

processor performs calculations on data in its local

memory, and communication, where some or all processors

pass information between themselves in synchrony. With

iterated local operations, this information will lie at

the border of the image subreqion contained in each

processor. In the following sections, we discuss the

following question: given that at each iteration processors

must pass appropriate border information, what is the optimal

image subreqion shape?

2.1.1 Optimal Rectangle: Strips vs. Squares

The first question is whether squares are the best

rectangles; intuitively, this is so, because (in the 8-

neighbor case) a one-thick border around the region must

be passed at each iteration, and a square has the smallest

perimeter of any rectangle having the same area (Fig. 1).

More rigorously, let A be the subreqion area and Q be the

rectangle length, so that A/9, is the rectangle height.

Then C, the cost of passing the region perimeter, is pro-

portional to

C(9) = 2A/9 I 2v + 4

To optimize for k, we differentiate and set to 0:

d C(£) = - 2 A + 2
dZ 2
2A

= 2

I2
2

= A

- , - .



Since R = A describes a square, it is the optimal rectangle.

2.1.2 The 8-Neighbor Case: Comparison of Square, Diamond,
Triangular, arid Circular Shaped Regions

Now that squares have been shown to be the best rec-

tangles for local operations, diamonds, trian.les, and

circular regions will be compared for efficiency too (without

regard for the potential difficulty of performing the

subdivision). The statistics compared will be the perimeter-

to-area ratio, the fraction of overhead spent passing data

instead of the real work, computing. Figure 2 graphically

illustrates the border size calculation, and Table 1 contains

the perimeter/area ratios.

As presented, Lhe data shows squr~ies bettor than

trianqles bettet Lhan diamonds. circles, in the 1imit,

are as good as squares, but for realistic values come out

worse (in Fig. 2, the circle has area 49, perimeter 40,

with the equivalent square's perimeter 32) , not to mention

the image subd ivi son nrobl1,r. Again, squares are best.

2.1.3 Other Neighborhoods

-. The 4-Neighbor Case

Figure 3 illustrates the algebraic relationship between

rerimeter size and area for square, diamond and triang]ular

regions in the 4-neighbor case. Since the neighborhood is

.-ymrietrical, tLhc triangle produces the same result in any

crientation. Table 2 shows that a square is superior to

either a triangular or diamond region.
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b. The 2 x 2 Neighborhood

This neighborhood shape is used in the Roberts

gradient and in shrinking and shifting operations. Fiqure

3 and Table 2 again show that a square region subdivision

is best for these operations.

c. Other Asymmetric Neighborhoods

The two types of neighborhoods used in the standard

connected component labeling operation, for 8- and 4-connctcd-

ness, are shown in Figure 3. Once more, Table 2 shows that

a square is best.

S.



2.2 Optimal Region Overlap

Once the region shape has been decided, the next

question is how to best coordinate the cyclinq between

computation and communication in the course of iterated

local operations. In particular, additional border informa-

tion is required for each iteration of a local operation.

Is it best to pass several layers of border information at

once and then compute on them, or just one layer at a time?

The answer is: just one layer at a time. Intuitively,

the more layers we pass at each stage, the larger each

successive layer gets (Fig. 4). Likewise, the amount of

computation grows for each successive layer of border

points added to the region (Fig. 5). Thus, we cannot

(lain by passinq more than one layer at a time between

computations, and the pass one layer - compute one iteration

strateg ly is optimal.

More formally, ]Ct i tLh total ni1mb1 01 it viLt i on,;

to be performed, I = the number of iterations to be per-

formed at each step (the variable to be optimized), p =

the time to pass one point, t = the time to perform one

local operation, and n = the side ]enqth of the square we

are dealing1 with. The communication time for one round

is

4 (nj+j 2 )p



rioe compl~tita t in (~lIHI im loi onl(, roudi i s

tiY(n-*2k) -, ()r (as a jpolyjiom i al In0

43 2 2 2
tI-j +(2n-2)j +(n -2n+.P)

Adding these together, and multiplying by i/j, which is

the total number of rounds to complete i iterations, gives

us a total time of

4 2 2~tij +2i(t(ii-l)+2p)j + (ti(n _-2n±+) 44inp)

Differentiating, setting to zero, and solving for j gives

3 - 3 l) 3 p)

A negative optinal value of j implies that we should use

the minimum legal value, and j should be II.



2.3 Timing: VAX vs. ZMOB Computation Tradeoff

When is it better to use ZMOB rather than simply using

the host VAX? In other words, when does the overhead of

using ZMOB (loading and unloading an image to/from the

processors via the conveyor belt) offset the time saved in

performing the (iterated) operation? To answer this,

we must first obtain formulas for computation times on

VAX and ZMOB. The variables will be:

N = length of image side (area =N2

P = number of processors in ZMOB (256)
p = time to pass one pixel between ZMOB processors
C z= time to compute one local operation on ZMOB
C = time to compute one local operation on VAX
n = ZMOB square region side (n2=N2/p)
m = number of iterations of local operation
r = time to pass one pixel over the UNIBUS

2.3.1 Vax and ZMOB Computation Times

On the VAX, the time to compute m iterations of

a local operation which takes Cv time per pixel is

TVAX
= mCvN

2

On ZMOB, the computation must be split into three

stages: loading (Lz), processing (P7 ), and unloading (U z).

a. Loading and Unloading

Each processor in ZMOB may be loaded simultaneously

from the VAX over the conveyor belt; each processor's

2
subregion of N /256 points is loaded at the transfer rate

of the conveyor belt, p. However, the loading time is limited

2
by the time it takes to pass the entire N image points between

the VAX and ZMOB over the UNIBUS; this occurs at the UNIBUS trans-

fer rate(r). Loading and unloading times are the same:

L =U =rN
2

z z



b. Processing

There are two stages for each iteration of ZMO3 processing:

communication and computation. Pass Lime is (4n4)p per

iteration, and compute time n2C per iteration; thus
z

Pz = (4n+4)mp + n2 mC 
:

In summary, the total time for ZMOB processing is

TZMOB Lz+U z+PZ, or

TZMOB - 2rN2  + (4n+4)mp + n2 mC
ZMOB z

2.3.2 VAX vs. ZMOB Tradeoff

Given that the VAX takes some fraction , of the time

that ZMOB does for the qiven local operation (i will vary),

how time-consuminq must that local operation be (on ZMOB,

say) before it is worth movin the i m'l{le to0 7MO)B for

2 2
processing? Let Cv =(xC , and solve (lettin, n N /P):

TVAX r ZMO3

nJmC N 2= 2rN 2+(4n+4)mp+n 2mCzz

2rN 2 +4(N/st[+I)mpz 2
mN (cx-l/P)

Tables 3 and 4 show typical results for the realistic values

N = 512
P = 256
p = 10- sec. (10psec/byte ZMOB transfer

rate; a conservative estimate)
r = 4 x 10 sec (400 nsec/byte UNIBUS

transfer rate)

Table 3 g i. ves minimum ZMOB computation times for TVA x  ZMl)

and Table 4 gives minimum times for TVA X  10TPMOB.

VAX MOB

. ... .... ._.. ._..,, : , : .t . a,... . _ ,. .. i



We can see from these Lables that, since the smallest

value for C is the time required for one Z80 instruction orz

about one microsecond (10 - )t.c. ZMOB will almost al ways

be advantageous and will often be more than ten times fIaster

than the VAX. We can also see this in the following list of

fractional overhead values (the ratio of ZMOB loading and

unloading time to the total processing time) for a (one-

iteration) local operation: 98.9% when C equals 10 sec.
r-5

(around one instruction), 94.8" at Cz=l0 sec., 66.9" at
-4 -3 -

C =i0 sec., 17.0% at C =10 sec., and 2.0% at C =io- Sec.;

the ratio drops well below 1% for more than one iteration or

larger C values. Thus, even for once-performed local opera-

tions, ZMOB loading and unloading overhead is relatively

small, and since C z/ 2 5 6-Cv (usually), the use of ZMOB will

ordinarily be advantageous.

. -..- - --..-- I.



3. Two-dimensional Discrete Transforms

T .c metIhod k rI(,!-, c Iui hod hk' kW k- I CI atl IIt' ihe I wi-d ileCn -

sional Fourier transform (or other mniil or di ;r rete

transforms) of an N by N image in O(N log N) time. Each

processor is assigned a subregion of consecutive rows of

the image. The process is composed of three steps: a

row-wise fast Fourier transform (FFT) by each processor;

transposition of the image (matrix) between processors;

and a (now) column-wise FFT. Executing the FFT on each

row held by the processor is straightfoward and performed

in O(N log N) time. Transposition of the image to perform

the column-wise Lransform is acconplished as follows:

each processor is destined to receive a portion of each

row during the course of the transposition, with one portion

remaining in the processor. Processor i passes the portion

to go to processor i+l, which can be determined by computa-

tion, during the first communication round; this quantity

may be several elements (and several bytes per element).

During the second round, processor i+2 receives its

portion from processor i, and so on, until 255 rounds have

been completed. Each processor now contains one or more

columns. The process is illustrated in Figure 6. Each

row and column takes O(N log N) time to be transformed;

each processor contains N/256 rows or columns, but since

I.l
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N is bounded by the imaqe sizt. that ZMOB can realisticaly

hold, this can be regarded as a constant. The transposi-

tion process takes O(N) time to transfer the elements of

one or more rows to other processors. Thus the entire

algorithm takes time proportional to 2N loq N + N time,

or O(N log N).

Il

tl

.. . . -. . . -- . . . . .. . . . . ....r.- -. - -/ - _.4 ' . .,, , . ; - -, 0 , , =



4. Ceometric Correction

The problem of performini1 ,!omtLr i rct ion ()I ,n

image in parallel using ZMOB involves each processor

receiving information about the input image from othe'r

processors for each point in the output subreqion assigned

to that processor. The value of each output point is

computed by interpolation from the values of a set of input

points surrounding an ideal input point, usually having

non-integer coordinates, whose position is defined by the

inverse of the given coordinate transformation. For

example, for bilinear interpolation we use a 2 by 2 neigh-

borhood of the ideal input point, while for cubic spline

interpolation we use a 4 by 4 neighborhood.

One desirable condition for efficient geometric

correction on ZMOB is to have each interpolation neiqhbor-

hood reside entirely within one processor, so Lhat :nc, .2 c r

than one need be consulted to obtain an output imace value.

This may be insured by providing suitable overlaps bctwein

the subregions handled by the processors (e.q., a one-row

border for a 2 by 2 neighborhood). lowever, there is ;o

way of guaranteeing, in general., that we can conlqut, th e

output values in such a way that, at each step, each

processor needs information from a di t fereni Itroce',r.

As a result, the communica tion betweeln PI I,( 1,.&S a ; W 1 1 I

be evenly distributed, and it become. i mi lOSS1, to ,Iiw( y lii



exact estimate of the time required. Only in the special

case where the pixel d isp iaccuuwnt- is hounided by someo

distance d, it becomes possible to p~rovide an overlap

between processors proportional to d, thus allowinq eachi

processor to compute its portion of the output imiaqe

without consultinq other processors.



. ompui ation of ImolIe S at i s;t i cs

' I iiil,i o I i.stoi jrI ,lil A I qo r i t 11

Wt' f i r-st cons ider f he p1(d)Iem ) (*1JoI 1 1( the irt'-

level histogram of an image in ZMOB (either freshly

loaded from the VAX or already present after a series of

previous image operations) In the aiqorithm to be

described helow, the (joal is tor each of the 256 processors

to contain the frequency of occurrence of one of the values

of the (eiqht-bit) grey level, for an imaqe of arbitrary

size (though with an upper bound, within the constraints

of local memory)

The method i,; divided into two steps: local hist-orjram

creation and histo (ram merg i u, .)urinq hi J.oqranl creation,

each processor creates a 256-bucket hiustog ram for it.s

sub-portion of the total image, the image area beinq

(livided into 256 equal parts (the t raLeqy for part it ioninql

is irrelevant and no overlapping is necessary). Each bucket

may be of some appropriate size, say 16 or 24 bits, which

will accommodate the largest possible value, or perhaps the

hiqhest bit may be reserved as a bucket overflow indicator.

Each processor also has a different (and ]arqer) bucket,

corresponding to its processor I.1). and to the grey level

that it will be countinq, that it is responsibl e for

total ling durinq the next stLep.



During the histogram merging phase, each processor

will pass the contents of each histogram bucket (other

t kin i t own) to t he appyropriail te procssor for t ot ] -I I me"

has the initial count for its own bucket:,. lurinq the

first round, processor i passes the contents of bucket

i+1 (module 256) to processor i+I for total]inq. On the

second round, bucket i+2 is passed to processor i +2, and

so on. After al] 255 bucket values belongino to other

processors are passed, they are disregarded and the

processor's own final value is returned to the VAX.



5.2 Co-occurrence Matrix Computation

The problem of computing co-occurrence matrices is

very similar to that of histogramming. Each co-occurrence

matrix element is a frequency of a pair of grey levels

occurring at a particular distance and orientation from

one another, just as each element of the histogram (vector)

is the frequency of a single grey level occuring at any

pixel. The one difference is that a co-occurrence matrix

is potentially much larger (the square of the total number

of grey levels). Usually, the range of grey levels used

is more restricted than in the histogram case -- e.g., we

use only the upper five or six bits of the grey value.

Another difference is that the geometry of the pixel pair

calls for the use of appropriate overlap when storing the

image subregions in the processors (see Figure 7). In

particular, if each pixel is compared with one m units

horizontally and n units vertically displaced, we can

use square subregions with m columns and n rows of over-

lapping. This obviates the need to request information

from other processors durinj the course of the computa-

Lion, at a great savings of time with a small cost of

extra memory used. The process then proceeds similarly

to the histogramming algorithm: each processor computes

a co-occurrence matrix for its subregion; each processor

is assigned 1/256th of the matrix elements (arbitrarily)



to total; and throuqh 255 rounds of communic t ion , ech

1) rock'e s I" :;1 ( I5 e ch ot herI Ir .;: I- i i!. pol-t ioll of t h

nia trix t Lotal , ,I , 11 ( c' \1- ' th(' )t lI r 2 , I Ia, LII':; (I

its own matrix portion. Each matrix portion will probaibly

consist of several matrix elements, each potentially

several bytes lonq. After the totallinq is completed,

each processor communicates its portion to the VAX whert,

tho final matrix is assembled.

ILt



6. Concluding Remarks

We have seen that ZMOB should have substantial

speed advantages in many image processing situations.

In particular, we have outlined efficient ZMOB communica-

tion/computation schemes for point and local operations

(with particular reference to how the data should be

partitioned among the processors), discrete transforms,

qeometric operations (in some cases), and computation of

statistics. These schemes demonstrate that efficient

use of ZMOB's parallelism is possible for essentially

all basic image processing and analysis tasks.
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